Arbuscular Mycorrhizal Fungi Alleviate the Negative Effects of Iron Oxide Nanoparticles on Bacterial Community in Rhizospheric Soils

نویسندگان

  • Jiling Cao
  • Youzhi Feng
  • Xiangui Lin
  • Junhua Wang
چکیده

As a crucial reciprocal partner, arbuscular mycorrhizal fungi (AMF) can alleviate the negative effects of a variety of pollutants on their hosts and soil microbes. In our previous studies, such characteristics of AMF on plant growth were documented in response to metal engineered nanoparticle (ENP) treatments. However, the role of AMF in influencing ENP effects on soil microbes remains a matter of debate. To address this issue, we investigated the responses of soil microorganisms to iron oxide nanoparticles (Fe3O4NPs) along a concentration gradient (0.1, 1.0, and 10.0mg kg −1) in maize plants inoculated with and without AMF. The results showed that a high concentration of Fe3O4NPs significantly decreased the soil bacterial abundance and shifted the community composition, and these negative responses were associated with decreased soil dissolved organic C (DOC) contents in non-AMF-inoculated treatments. However, in AMF-inoculated treatments, no significant changes in soil biota or DOC contents were observed under Fe3O4NPs treatment. These results indicate that AMF alter the effects of Fe3O4NPs on soil microorganisms, possibly by influencing plant growth and organic matter released from plant roots, as DOC contents were impacted by AMF. Our findings suggest that AMF can influence Fe3O4NP-plant-microbe interactions; therefore, more attention should be focused on plant-associated microbes when evaluating the biological effects of nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cry1Ab Protein Has Minor Effects on the Arbuscular Mycorrhizal Fungal Communities after Five Seasons of Continuous Bt Maize Cultivation

The cultivation of genetically modified plants (GMP) has raised concerns regarding the plants' ecological safety. A greenhouse experiment was conducted to assess the impact of five seasons of continuous Bt (Bacillus thuringiensis) maize cultivation on the colonisation and community structure of the non-target organisms arbuscular mycorrhizal fungi (AMF) in the maize roots, bulk soils and rhizos...

متن کامل

Effect of Arbuscular Mycorrhiza fungi application on distribution of phosphorus forms in rhizosphere soils of sunflower (Helianthus annuus L.)

Appropriate management of soil phosphorus (P) fertility in highly calcareous soils of Iran as around the world should rely upon sound knowledge about the phosphorus reserve and its bioavailability. Despite numerous reports on the positive effects of vesicular arbuscular mycorrhizae (VAM) fungi on phosphorus uptake which is associated to Ectomycorrhiza as a branch of two major branches of group ...

متن کامل

Role of Arbuscular Mycorrhizal (AM) Fungi in Phytoremediation of Soils Contaminated: A Review

Pollution of the soil environment with toxic materials from fossil burning, mining and smelting of metalliferous ores, disposal of sewage, fertilizers and pesticides, etc. has increased dramatically since the onset of industrial revolution. Application of plants with ability of absorbing heavy metals is a low-cost alternative for eliminating soils from heavy metals. Phytoremediation uses plants...

متن کامل

Role of Arbuscular Mycorrhizal (AM) Fungi in Phytoremediation of Soils Contaminated: A Review

Pollution of the soil environment with toxic materials from fossil burning, mining and smelting of metalliferous ores, disposal of sewage, fertilizers and pesticides, etc. has increased dramatically since the onset of industrial revolution. Application of plants with ability of absorbing heavy metals is a low-cost alternative for eliminating soils from heavy metals. Phytoremediation uses plants...

متن کامل

Evaluation Effects of Mycorrhizal Fungi (AM) and Nano Zinc Oxide on Seed Yield and Dry Matter Remobilization of Wheat (Triticum aestivum L.) under Salinity Stress

This research was carried out to assessment agro physiological traits of bread wheat affected salinity stress, Nano zinc oxide and arbuscular mycorrhiza (AM) fungi under greenhouse condition via factorial experiment based on randomized complete blocks design with three replications. Experimental factors included salinity stress in three levels [no-salt (S0) or control, salinity 40 (S1), and 80 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016